Development of a finite element model of the human cervical spine.

نویسندگان

  • Iman Zafarparandeh
  • Deniz U Erbulut
  • Ismail Lazoglu
  • Ali Fahir Ozer
چکیده

The finite element model has been used as an effective tool in human spine biomechanics. Biomechanical finite element models have provided basic insights into the workings of the cervical spine system. Advancements in numerical methods during the last decade have enabled researchers to propose more accurate models of the cervical spine. The new finite element model of the cervical spine considers the accurate representation of each tissue regarding the geometry and material. The aim of this paper is to address the new advancements in the finite element model of the human cervical spine. The procedures for creating a finite element model are introduced, including geometric construction, material-property assignment, boundary conditions and validation. The most recent and published finite element models of the cervical spine are reviewed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress Analysis of the Human Ligamentous Lumber Spine-From Computer-Assisted Tomography to Finite Element Analysis

Detailed investigation on biomechanics of a complex structure such as the human lumbar spine requires the use of advanced computer-based technique for both the geometrical reconstruction and the stress analysis. In the present study, the computer-assisted tomography (CAT) and finite element method (FEM) are merged to perform detailed three dimensional nonlinear analysis of the human ligamentous...

متن کامل

Estimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study

Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...

متن کامل

Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading.

This study was conducted to develop a detailed, nonlinear three-dimensional geometrically and mechanically accurate finite-element model of the human lower cervical spine using a high-definition digitizer. This direct digitizing process also offers an additional method in the development of the finite-element model for the human cervical spine. The biomechanical response of the finite-element m...

متن کامل

The biomechanical response of lower cervical spine under axial, flexion and extension loading using FE method

Objective. To develop a detailed three-dimensional geometrically and biomechanically accurate finite element model of the human lower cervical spine, and to further investigate the biomechanical responses of the simulated ligamentous and articulating facets injured human cervical spine. Study design. The study comprised the development of a finite element model of human lower cervical spine and...

متن کامل

Biomechanical Study of Cervical Spine with Pathology

The cervical spine is one of the most complex structures of the human skeleton. The knowledge of the cervical spine kinematics is a very important tool for many clinical applications such as diagnosis, treatment and surgical interventions and for the development of new spinal implants. The finite element method (FEM) is a well-known and widely used numerical method to simulate structural behavi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Turkish neurosurgery

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 2014